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Abstract

When humans speak, they do not plan their full utterance in
all detail before beginning to speak, nor do they speak piece-
by-piece and ignoring their full message — instead humans use
partial representations in which they fill in the missing parts
as the utterance unfolds. Incremental speech synthesizers, in
contrast, have not yet made use of partial representations and the
information contained there-in.

We analyze the quality of prosodic parameter assignments
(pitch and duration) generated from partial utterance specifi-
cations (substituting defaults for missing features) in order to
determine the requirements that symbolic incremental prosody
modelling should meet. We find that broader, higher-level infor-
mation helps to improve prosody even if lower-level information
about the near future is yet unavailable. Furthermore, we find
that symbolic phrase-level or utterance-level information is most
helpful towards the end of the phrase or utterance, respectively,
that is, when this information is becoming available even in the
incremental case. Thus, the negative impact of incremental pro-
cessing can be minimized by using partial representations that
are filled in incrementally.

Index Terms: incremental processing, prosody, speech synthe-
sis, spoken dialogue systems, simultaneous interpreting

1. Introduction

Incremental speech synthesis (iSS) produces speech from a spec-
ification that is only finalized after utterance delivery has already
started. This capability is required in novel, interactive applica-
tions such as simultaneous interpretation [1, 2], live commentary,
for example in sports domains [3], or highly responsive dialogue
applications [4]. All of these applications break the conventional
“reading out aloud” metaphor of speech synthesis processing a
text that is fully known in advance.

A particular problem for iSS is the generation of plausible
utterance prosody, because prosody contains long-range depen-
dencies such as rhythm clashes several words ahead that influ-
ence the current realization. These long-range dependencies can
be dealt with by (a) having synthesis lag behind such that all
(or most) dependencies are satisfied, (b) ignoring dependencies
and lagging behind less, or (c) using non-final data in case the
correct data is not yet available. The trade-off between prosodic
quality and low processing lag is a general property of incremen-
tal processing — while the trade-off cannot be solved, it can be
optimized to lead to good results given the circumstances.

In speech synthesis, prosody generation can be split into two
parts: the assignment of symbolic intonation information (e. g.
determining intonation phrases and stress marks on words using
the ToBI system [5]), and the derivation of synthesis parameters
(tempo and pitch, in the form of segment durations and fo) from
the symbolic representation.

This paper investigates possibilities to improve the parame-
ter derivation from symbolic features. The method’s flexibility
allows it to make use of symbolic features when they are avail-
able and to use default values when features are unavailable.
This results in an optimization of the incremental processing
trade-off that leads to results almost on par with non-incremental
processing. Specifically, we find that this is caused by the fact
that features are most often available when they are most needed.

2. Related work

Psycholinguistic research has found human speech to be pro-
duced incrementally [6], yet most speech synthesizers do not
make use of this insight [7, 8]: instead, they process — in a
top-down manner — each layer of abstraction after the other,
assuming all higher-level information to be complete before pro-
cessing on the next layer starts. Many of the processing layers
have recently been shown to work reasonably well incrementally,
with limited contexts.

Most straightforwardly, non-incremental speech synthesis
technology can be used repeatedly with piecewise extended input
and stitching together the produced outputs [9]. The prosodic
quality obtained in this manner depends on the lookahead, that
is, how soon further input must become available in order to give
contextual hints to current processing. Previous work found that
one intonation phrase of future context (beyond the phrase that
is currently being delivered) is necessary to result in acceptable
prosody under this approach [10], but without differentiating
the influence of symbolic intonation assignments, HMM state
selection, or further influences of incremental processing. The
goal of the present paper is to state more precisely, as well as to
reduce, this lookahead requirement.

The selection of HSMM states, durations, and pitch is based
on symbolic intonation and segmental assignments by higher-
level linguistic pre-processing. It is often performed using deci-
sion trees (such as CARTs [11]). In HMM synthesis, multiple
trees (based on identical feature vectors) are used for duration,
pitch, cepstral, and aperiodicity parameters, respectively. Con-
straining the features which are available to decision-making
has been investigated by several authors, with the purpose of
abandoning higher-level features [12], for speech coding [13],
and with incrementality in mind [14], in the latter case limiting
features to the current syllable, word, or current phrase. While
cepstral and aperiodicity parameter assignments work well with
strongly limited contexts (e. g. including up to the current word),
duration and fj assignments appear to require larger contexts.
For this reason, the present papers focuses on prosodic parame-
ters.

All works on the relevance of feature usage for HSMM state
selection find that quality deteriorates when features are left
out. In all cases, features are grouped into feature classes; the
classes used by [14] and re-used in the present paper are shown



Table 1: Counts of decision features, categorized along the tem-
poral axis and by levels of linguistic abstraction (indicating
granularity), for German. Feature classes are encircled.

past current  future

phone

syllable

word
phrase/accentuation
full utterance

in Table 1. To the best of the author’s knowledge, previous work
has not investigated the conditional usage of features (or feature
classes) depending on the context availability during incremental
processing. For example, phrase-level features are likely avail-
able during phrase-final words, but may be unavailable before.
Investigating the use of features when they are likely available
in practice is the novel contribution of the present work.
‘Below’ the level of this work, HSMM parameter optimiza-
tion has previously been shown to work well within local con-
texts [15, 16], global variance optimization [17], which greatly
improves HSMM synthesis quality, has recently been supple-
mented with a local alternative [18], for which Chunwijitra et al.
[18] find superior results to GV with a lookahead of only 50 ms
(10 frames into the past, 10 frames into the future). Finally,
STRAIGHT vocoding [19] is inherently incremental.

3. System architecture

Making use of as much information as is available for decision-
making is a straightforward idea which is, however, not well sup-
ported by conventional speech synthesis architectures. The pro-
cessing layers and their (simplified) associated data is sketched
in Figure 1. Conventional systems process information top-down
and layer-by-layer. That is, processing on a lower layer only ever
starts when processing on all higher layers has been completed.
In contrast, incremental synthesis starts outputting speech as
soon as the first phones can be realized and further processing on
every layer is triggered either by the availability of what is to be
spoken, or the need for some information by a lower processing
layer.! The extent to which processing depends on “future’ data
(such as the identity of the second-to-next phoneme) is described
by the lookahead requirement of the processing mode.

For the task at hand, determining HSMM states with decision
trees that use features from all layers of symbolic processing
(cmp. Table 1), the lookahead requirement depends on what
features are to be used. For example, following the approach
in [14], using phrase-level features requires that all words and
phones in the current phrase have been determined.

The simplistic approach from [14], which presupposes the
(un)availability of data on a certain level of abstraction is ineffi-
cient in several circumstances: (a) for the last word in a phrase,
it is (almost) certain that all phrase-level information is available
— yet this may often not be the case for early words of the phrase;
(b) for a given (multi-syllabic) word, features relating to the next
syllable will be available — yet, relying on the next syllable being
available implies to know the next phrase (at least its beginning)
for phrase-final syllables. Thus, we propose to flexibly use all

1Of course, input must be provided sufficiently quickly as to not
interrupt speech delivery — however, as speech is a relatively slow com-
munication channel, significant adequacy gains are possible using iSS in
practical applications [20, 21, 22].
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Figure 1: Simplified representation of symbolic data available
for HMM state selection (dashed boxes: data yet undetermined
in incremental synthesis).

features that are available and to skip those features that are
unavailable.

Granularity is an important concept in incremental process-
ing and describes the size of the units that form the input and
output of a processor. Previous systems have assumed input in
the form of multiple word chunks [9] which in [10] have been
required to co-incide with intonation phrases. We here propose
a more flexible ‘mixed granularity’ approach, in which different
types of input (phrasing information, words, etc.) are specified
independently. We show that this is more suitable, and (as will be
shown below) better matches the problem of providing features
to decision-making. While the architecture of our system pro-
vides a mixed-granularity approach, the programming interface
to manage partial representations is yet to be finished.

4. Implementation

Our system is implemented in InproTK [23] and extends In-
pro-iSS [9] which uses adapted code from MaryTTS [7] for
linguistic analyses, HSMM optimization and vocoding.

Previous versions of Inpro_iSS have used the HMM states
that were non-incrementally computed by MaryTTS and only
performed parameter optimization and vocoding incrementally.
In the present system, we additionally decide on HMM states
using feature vectors that are incrementally determined from the
current state of the IU network.’

In addition, our system implements incremental prosody
assignment only, that is, the assignment of parametric values
(durations, fo, cepstral, and aperiodicity means and variances)
based on non-incremental symbolic intonation from MaryTTS.
In our system, we assume that a phrase’s symbolic intonation can
be determined as soon as its final word is known. Section 6 adds
a smaller experiment to determine in how far this assumption
holds true. Also, even though symbolic intonation can be hard to
determine in text-to-speech tasks (as used in the experiments be-
low) because all structural information needs to be reconstructed
from the textual form, dialogue systems or simultaneous inter-
preters should have much of this structural information readily
available already during utterance delivery.

Of course, in a deployed incremental system, information
should always be considered as soon as possible (especially if

280 far, no real feature extraction from the IU network has been
implemented, but instead the non-incremental feature vectors are adapted
to contain only those features that are available (and valid) given the
context. Features that are not available in the incremental setting are
replaced by default values (similarly to and using the same defaults
as [14], but on a per-feature basis). Thus, while the current system is
not fully lazy/just-in-time incremental, it provides identical results as if
feature extraction were completely re-implemented (which we plan to
do in the near future).



Table 2: Prosody (fo and duration) deviation relative to non-
incremental (full-context) processing (BITS-1 voice, IPdS cor-
pus) of settings with and without context-sensitive feature usage.

fo in Cent duration in ms

setting  RMSE MAE RMSE MAE

context—1phone 192 0.0 28.9 3.32

current word* 219 14.3 26.4 1.46

context sensitive 170 0.0 25.5 0.63
context+utterance 32.5 0.0 2.0 0.0

current phrase* 167 0.0 254 036

*experimental settings as previously reported in [14].

it can revise later on). However, for experimentation outside of
specific application areas, some assumptions on the availability
of information need to be made. Specifically, we decided that
features relating to the next syllable (and the second to next
phone) are only available if these are part of the current word
(or current syllable, respectively). We also decided that phrase-
level information is only available (and should be trusted) during
the final word of the current phrase. In addition, information
pertaining to the full utterance is only available on the utterance-
final word (or not at all, this is one of the conditions tested in
the following section). We also analyze the influence of the next
phone features being always available (vs. not, if the next phone
already belongs to the next word) in one of the conditions below.

5. Experiments using full symbolic
intonation

We use the same corpus of 598 German utterances from [24] as
used in [14], which are synthesized using the BITS-1 voice [25]
deployed with MaryTTS (version 4.3). Utterances are relatively
short, totalling only 751 phrases (for an average of 1.26 phrases
per utterance, 6.1 words per phrase).

We compare the following experiment conditions:
current word condition from [14] which includes all features

pertaining to the current word and future syllables,
current phrase similar to current word, including features up
to (including) the current phrase and future words; the
current word and current phrase conditions form a lower
and upper bound for the performance of the new method,
context sensitive the context sensitive method (using phrase-
features when available) as described in Section 4,
context+utterance context sensitive method including full-
utterance level information for the utterance-final word,
context—1phone context sensitive method but excluding the
next phone if it does not pertain to the current word.

We report root-mean-squared error (RMSE), as well as the
median absolute error (MAE) for per-state fo and phone dura-
tions in Table 2. Clark and Dusterhoff [26] found that RMSE
between pitch contours best correlates with user ratings from
perceptual evaluation among a number of measures. Settings are
ordered in the table by the mimimal lookahead that they require.

As can be seen in the table, errors decrease with the minimal
amount of lookahead used by each condition and the context
sensitive method performs very well: it does not use any more
lookahead than the current word method, but its performance is
actually very close to that of the current phrase method which
requires current-phrase features to be available in the whole
phrase, not only during the phrase-final word.

In addition, the context sensitive method with addition of

Table 3: Performance impact (in terms of RMSE) of using fea-
tures in the final word of the phrase (or utterance).

non-final final
setting fo  dur fo  dur
phrase- w/o phrase inf. 426.0 53.6
level w/ phrase inf. 882 3.68 340.6 533
utterance- w/o utt. inf. 370.5 56.2
level w/ utt. inf. 216 2.00 64.2 2.1

full-utterance features (yet, only for the utterance-final word)
gives a dramatic improvement and is almost as good as non-
incremental processing, with an fo RMSE of less than /3 of a
semitone and a duration RMSE of 2 ms. Also, distinguishing the
improvements between fy and duration, phrase-level features
appear to be important for f, whereas utterance-level features
are important for duration estimation.

Finally, the context—Iphone, which is truly word-by-word
incremental, still outperforms the fo assignments of the current
word method. However, next (and, to a lesser degree, second-to-
next) phone features are very important for cepstral and aperiod-
icity assignment [14]. They should hence not be skipped entirely.
An (informal) listening experiment confirms this issue.

In order to validate the extremely good results of the con-
text sensitive conditions, we performed another experiment in
which we compare the performance of the context sensitive
approach with and without context-sensitive phrase-level infor-
mation on all phrase-final material and on all non-phrase-final
material (where phrase-level information is unavailable in either
case). Similarly, we compare the context+utterance approach
non-finally and finally (with and without utterance-level fea-
tures). The results are shown in Table 3.

As can be clearly seen, both phrase- and utterance-level fea-
tures are most important towards the end of phrases (respectively
utterances), with the final words causing the vast majority of the
overall error (in the case of phrase-level features even when the
features are available, potentially because important utterance-
level features are still missing). It must, however, be noted that
errors are still high in the final portions of the phrase or utterance,
which indicates that prosody of phrase/utterance-endings is more
complex than mid utterance.

We conclude that both phrase-final and utterance-final fea-
tures are most important when they are actually available even
in incremental processing using a word-by-word granularity.
The negative performance impact of incremental processing on
HMM state selection can be reduced immensely by using partial
representations.

6. Experiments using limited symbolic
intonation

We finally estimate the performance of our new method under
limited, incrementally produced symbolic intonation instead of
full, non-incrementally produced symbolic intonation. We use
the previous restart/rewrite method from [9, 10], as our system
still lacks a truely incremental intonation processor. The method
works best with full phrase increments and hence we use the
Calendar domain data [20] as in [10].> The corpus contains 9

3Note however that for several reasons the numbers in [10] cannot
directly be compared to the numbers presented in this section.



Table 4: Performance impact of using incremental intonation
and/or prosodic parameter assignments in terms of RMSE as
compared to non-incremental intonation and non-incremental
prosodic parameter determination.

symbolic intonation  parametric prosody fo dur.
non-incremental context+utterance 47.2 6.93
context-sensitive 143 21.8
Wn—1 incremental non-incremental 0.0 1.81
context+utterance 51.9 6.81
context-sensitive 162 21.8
wy, incremental non-incremental 227 31.5
context+utterance 223 30.5
context-sensitive 201 194

utterances with 6-7 phrases each (totalling 59 phrases and 243
words).

We generated both phrase-incremental as well as non-incre-
mental symbolic intonation. Intonation information that derives
from processing the next phrase was either used only after the
current phrase (this corresponds to the w,, condition in [10]) or
integrated back into the last word of the current phrase (corre-
sponding to the w,_1 condition). We combined these symbolic
intonation sources with non-incremental and context sensitive
(normal and including utterance-level features) prosodic parame-
ters.

The results for fo and duration RMSE relative to completely
non-incremental processing are shown in Table 4. It turns out
that integrating the next phrase and recomputing symbolic into-
nation before speaking the last word of the current phrase (the
wnr,—1 condition) only incurs a very small performance penalty as
compared to non-incremental symbolic intonation assignments.
In both cases, context+utt outperforms plain context sensitive,
but still leaves considerable error (RMSE of roughly 1/2 a semi-
tone) as compared to completely non-incremental sub-symbolic
prosody assignments. The zero fy error of wy,_1 combined
with non-incremental prosody assignment indicates that fo as-
signments only differ in the final word of the phrase, at least in
these nine utterances; the small duration error must stem from
the timing differences in penultimate words of phrases. Finally,
incorporating symbolic intonation only after the phrase (w,, con-
dition) is too late to lead to plausible mid-utterance prosody and
the fact that using less features for parameter estimation performs
better indicates that the substituted defaults are in fact better than
the sentence-end intonations falsely produced by incremental
intonation processing without lookahead.

7. Conclusion

This paper has analyzed the advantage of flexibly using all avail-
able symbolic intonation features when assigning sub-symbolic
prosody parameters (fo and duration). Compared to statically
limiting the feature context to some class (which then results in
a certain lookahead requirement in incremental processing), the
context sensitive method performs much better: with a looka-
head of one word, it radically outperforms the static current
word condition and approaches the performance of the static
current phrase method (which, however, requires a lookahead
of a whole phrase). The performance gain is maximized when
utterance-level information is taken into account for utterance-
final words.

We find the majority of errors to occur phrase- and utterance-

finally, that is, when utterance/phrase-final information can be
reasonably considered to be available. This corresponds well
with the fact that speech itself is an incremental phenomenon
and, as human speakers often change or extend their utterances
while producing them, only relies on information that is known
at the time of realization.

We test our method with simplistic incremental intonation
assignments and find that integrating a next phrase before the last
word of the ongoing phrase already leads to results that are simi-
lar to the non-incremental intonation condition and only differ
by 2 semitone and 7 ms RMSE from complete non-incremental
intonation and prosody assignments. These results radically out-
perform [10] which require almost a full phrase of lookahead
(w1 condition in [10]) for similar results.

Our current implementation does not yet determine all
features from the incrementally available data, but uses non-
incrementally produced feature sets that are trimmed off the
features that are not available or reliable in the incremental set-
ting. This implementation is inefficient and we work on changing
it to truly incremental feature extraction from the IU network.
Another area of future work is to build decision trees that are
specifically designed for incremental use-cases, for example with
an implementation that explicitly supports missing features in-
stead of using global default values, with a possible intermediate
solutions of context-dependent defaults.

We have, so far, only analyzed the word-by-word extension
of ongoing synthesis. It will be interesting to investigate how
changes (of the words to be spoken, or phrase-level intonation
to be realized) need to be handled, for example, how quickly a
change of phrase-level intonation should be realized by prosodic
parameters. Finally, we plan to validate the reported numerical
evaluation results in a listening experiment.

8. Software

The methods presented in this paper have been added to the
iSS component of InproTK. InproTK is free and open-source
software and is available at http://inprotk.sf.net.
MaryTTS, which forms the basis of the present work, is available
athttp://mary.dfki.de.
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