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Abstract. Automatic speech recognition (ASR) is not only becoming increasingly
accurate, but also increasingly adapted for producing timely, incremental output.
However, overall accuracy and timeliness alone are insufficient when it comes to
interactive dialogue systems which require stability in the output and responsivity
to the utterance as it is unfolding. Furthermore, for a dialogue system to deal with
phenomena such as disfluencies, to achieve deep understanding of user utterances
these should be preserved or marked up for use by downstream components, such
as language understanding, rather than be filtered out. Similarly, word timing can
be informative for analyzing deictic expressions in a situated environment and
should be available for analysis. Here we investigate the overall accuracy and
incremental performance of three widely used systems and discuss their suitability
for the aforementioned perspectives. From the differing performance along these
measures we provide a picture of the requirements for incremental ASR in dialogue
systems and describe freely available tools for using and evaluating incremental
ASR.
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1 Introduction

Incremental ASR is becoming increasingly popular and is available both commercially
and as open-source. Given this recent development of systems, the question arises as to
how they perform and compare to each other, not just in terms of utterance-final accuracy
but also in terms of their incremental performance.

For a spoken dialogue system (SDS) consuming ASR output, incrementally receiving
partial results for an on-going utterance means the system can start processing words
before the utterance is complete, leading to advantages such as quicker responses, better
interactive behaviour and dialogue management, more efficient database queries, and
compensation for inefficient downstream processors such as slow robot actuators — see
[1] for an overview. SDSs that process incrementally produce behaviour that is perceived



to be more natural than systems that use the traditional turn-based approach [2-5], offer
a more human-like experience for users [6], and are more satisfying to interact with than
non-incremental systems [7].

Metrics have been proposed to evaluate incremental performance for ASR [8-10],
which we build on in this paper. We also deal with evaluating an incremental ASR’s
performance on difficult phenomena from conversational speech such as disfluency. In
this paper we investigate these challenges, firstly by outlining suitable evaluation criteria
for incremental ASRs for dialogue systems, then investigating how off-the-shelf ASRs
deal with speech from participants in a task-oriented dialogue domain, both with and
without training on in-domain data. We present findings using our criteria to help SDS
builders in their decision as to which ASR is suitable for their domain. The alternative
ASR engines that are evaluated in this paper are all accessible in a uniform way with the
freely available InproTK? [11], as is the evaluation toolbox INTELiDa* that we use.

2 The challenge of interactive, conversational speech

While many current SDSs claim to deal with spontaneous speech, this is often in the form
of voice commands that do not require a fast verbal response, with some exceptions [3,
4]. When using voice commands, it has been established that people use more controlled,
fluent and restricted speech than when in a human-only dialogue [12], with users often
defaulting to what [13] calls ‘Computer Talk’.

We argue ASR evaluation currently does not focus on the challenge of interactive
speech as required for a highly interactive SDS. While popular dictation evaluation
domains such as the spoken Wall Street Journal [14] are clearly unsuitable, even the more
SLU (Spoken Language Understanding)-based benchmarks such as the ATIS (Airline
Travel Information Systems) corpus and other genres mentioned in [15]’s ASR analysis
do not meet the demands of ASR for high levels of interactivity and responsiveness.

3 Desiderata for incremental ASR for interactive SDSs

To address the challenge of interactive, conversational speech, here we briefly set out
requirements for ASR for its suitability for interactive SDSs.

3.1 Incrementality and timing information

In addition to being timely and accurate in terms of the final output at the end of an
utterance, we would like timeliness and accuracy on the word level from an ASR. In
Figure 1 we demonstrate the qualities needed by representing the evolution of hypotheses
made by a system over time, going from bottom to top, for the reference transcription
‘take the red cross’: (a) is the ideal behaviour as it produces fully incremental output
which is completely accurate, occasionally predicting the word before it is over, whilst the

3http://bitbucket.org/inpro/inprotk
‘http://bitbucket.org/inpro/intelida



failings in (b), (c) and (d) give us the incremental desiderata of stability of output, word-
by-word incremental output and timeliness of output. Metrics and tools for measuring

these incremental qualities will be described in Section 4.
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Fig. 1. Incrementality in ASR: vertical line indicates current time, diamond the time of update.
(a) perfect output, (b) unstable output, (c) non-incremental but timely, (d) non-incremental and
latent.

Another factor of situated conversational speech are deictic references that, in a fast-
moving environment, can only be interpreted correctly if the timing of deictic references
(and possibly co-occurring pointing gestures) is available for analysis. It is thus crucial
that an ASR provide, in a timely manner, timing of the recognized words.

3.2 Suitability for disfluency

One principal feature strikingly absent from Computer Talk but abundant in human
conversational speech is disfluency. Within the larger goal of incorporating understanding
of disfluent behaviour to dialogue systems [16], we require an ASR to detect all words
in speech repairs, preserving the elements of the well-established structure in (1) from
[17]’s mark-up.

@) John [likes 4+ {Fuh} loves] Mary
N—— S—— —
reparandum  interregnum  repair

There is evidence that repairs are reasoned with on an incredibly time-critical level
in terms of understanding [18] and there are clear examples of the reparandum being
needed to calculate meaning — such as in (2) and (3) where semantic processing access
to “the interview” is required to resolve the anaphoric “it” and “the oranges” is required
to resolve “them”. If an incremental disfluency detector such as [19] is to work in a live
system, all words within a disfluency must become available in the ASR output, and not
be filtered out.

@)
3

“[ the interview, was + {... } it was ] all right.” ([20])

“have the engine [ take the oranges to Elmira, + { um, I mean, } take them to
Corning ] ” ([21])



Filled pauses‘um’ and ‘uh’ can be considered English words in terms of their meaning
in conversation [22] and transcribers can reliably transcribe them. While they can form
interregna as in (1), isolated, non-repair filled pauses can indicate forward-looking
trouble from conversation participants [23]. These should therefore not be filtered out
during speech recognition if we are to build truly interactive systems.

Given this motivation, in additional to good incremental properties, we would also
like an ASR to exhibit preservation of disfluent material, that is, we would prefer word
hypotheses that are useful for disfluency detection and processing, with no filtering out
of reparanda and filled pauses.

4 Evaluation Metrics

To address the desiderata we split our evaluation methods into accuracy, timing and
evolution of hypotheses over time. Incremental metrics are provided by the InTELiDa
toolbox [24].

4.1 Utterance-level Accuracy and Disfluency Suitability

We use standard Word Error Rate (WER) of the final (non-incremental) hypothesis. Incre-
mental ASR cannot reliably outperform the accuracy of non-incremental systems, hence
its utterance-final quality is what matters most. To measure accuracy on disfluencies,
we filter all filled pauses and all reparanda from the transcripts (leaving only the repair
phases), so the standard reference ‘John likes uh loves Mary’ becomes ‘John loves Mary’
and compare WER before and after filtering. This is in order to find how much disfluent
material is recovered (which would result in worse performance on the filtered reference)
or whether the ASR itself filters disfluencies accurately (in which case the performance
would improve on the filtered reference). WER disfluency gain is simply: WER on dis-
fluency filtered original transcript — WER on original transcript. For preservation of
disfluent material, the higher this gain the better. However for accuracy of filtering out
disfluency, the lower the better.

4.2 Timing

Following [25] we use the First Occurrence (FO) and Final Decision (FD) measures to
investigate timeliness, where:

FO is the time between the (true) beginning of a word and the first time it occurs in
the output (regardless if it is afterwards changed). In Figure 1, (c) and (d) would perform
poorly using this metric, in particular for ‘take’ which is reported only long after it has
been spoken.

FD is the time between the (true) end of a word and the time when the recognizer
decides on the word, without later revising it anymore. If an ASR correctly guesses a
word before it is over, the value will be negative. Often, FD occurs simultaneously with
FO. If not, a word is revised and later returned to, which can be a frequent occurrence at
word boundaries.



Timeliness can only be measured for words that are correctly recognized or at least
appear in the final output of the recognizer and timing distributions are reported below.
FO and FD measure when words are recognized, but not how well-aligned these are to the
actual timing of the word in the audio. However, our impression is that recognizers which
report such timing information are very accurate (on the order of centiseconds). Thus,
the availability of timing is mostly a binary decision and depends on the recognizer’s
interface.

4.3 Diachronic Evolution

The diachronic evolution of hypotheses is relevant to capture how often consuming
processors have to re-consider their output and for how long hypotheses are likely to
still change. We have previously used Edit Overhead the proportion of unnecessary edits
during hypothesis building, to account for the former. However, we disregard this aspect
in the present work, as EO is mostly measuring computational overhead and there are
effective measures to reduce EO [8].

We instead focus on the stability of hypotheses [9], which measures the ‘temporal
extent’ of edits. For words that are added and later revoked or substituted we measure
the “survival time” and report aggregated plots of word survival rate (WSR) after a
certain age. These statistics can be used to estimate the likelihood of the recognizer being
committed to a word during recognition.

5 Evaluation domain: Pentomino puzzle playing dialogue
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Fig. 2. Example game scenes and collection setup used in collecting Pentomino interaction data.

The evaluations below make use of recorded human-human dialogue, and also
interactions between humans and (wizard controlled) SDSs, where participants were
instructed to play simple games with the “systems”. In all cases, the games made use
of geometric Pentomino puzzle tiles where participants referred to and instructed the
systems or human interlocutors to manipulate the orientation and placement of those tiles.
The interactions were all collected and utterances were segmented and transcribed. The
corpora were originally described, respectively, in [26-28]. We make use of two sets of
data in German and English. The German data yields 13,063 utterances (average length
of 5 words; std 6.27) with a vocabulary size of 1,988. Example game scenes are shown



in Figure 2 and example utterances (with English glosses) are given in Examples (4), and
(5) below. We use the German data for training and evaluating ASR models explained in
Section 6.2. We also use English data (both UK and US) from this domain yielding 686
telephone-mediated utterances (6,157 words) for evaluating existing English models, as
explained in Section 6.1.

“4) a. drehe die Schlange nach rechts
b. rotate the snake to the right

5) a. dann nehmen wir noch das zw- also das zweite t das oben rechts ist ... aus
dieser gruppe da da mochte ich gern das gelbe t haben ... ja
b. then we take now the se- so the second t that is on the top right ... out of this
group there I would like to have the yellow t ... yes

6 Evaluation of three ASR systems: Google, Sphinx-4, and Kaldi

6.1 Experiment 1: Off-the-shelf models for a dialogue domain

In our first experiment we do not train or adapt any of our ASR systems but evaluate their
off-the-shelf performance as in [15] but including incremental performance. We evaluate
on 686 utterances from the English data explained above.

Systems We evaluate Sphinx-4 [29] with most recent general AM and LM (version 5.2
PTM) for (US-)English, Google’s web-based ASR API [30] (in the US-English setting)
and Kaldi [31], for which we use the English Voxforge recipe (57,474 training utterances,
avg 9.35 words per utterance, presumably dominated by US-English). We choose Google
as the state-of-the-art ASR available via a Web-interface. We use Sphinx-4 because it
has previously been adapted for incremental output processing [8] and Kaldi as an
open-source speech recognition system that is growing in popularity and has incremental
capabilities [32].

Google partial results can consist of multiple segments, each of which is given a
stability estimate [10]. In practice, Google only returns stabilities of 1 % or 90 % (for both
German and English). While incremental results are 1-best, the final (non-incremental)
result contains multiple alternatives, with a confidence measure for the first (presumably
most likely) alternative. This final hypothesis appears to make use of post-incremental
re-scoring or re-ranking. While this is obviously intended to optimize the result quality
(SER or WER), it means that incremental results are just a ‘good guess’ as to what the
final result will be, with implications for the timing metrics as reported and discussed
below.

We implemented multiple options for interpreting the Google output:

— stable use only those segments which have a high stability (we use a threshold of
> 50%, but estimates as reported by Google are essentially binary),

— quick use all segments, including the material with low stability,

— sticky ignore the re-ranking from Google and choose the final hypothesis that best
matches the previous 1-best incremental result (as generated by the quick setting).
This setting is expected to result in lower non-incremental performance.



Table 1. Word Error Rate (WER) results on English Pentomino data for the off-the-shelf systems
under different transcript conditions with the WER disfluency gain in brackets.

US English speakers All English speakers
disfluency disfluency
System WER (all) fltered WER (all) fltered
Google-API-stable/quick  25.46  28.16 (+2.70) 40.62 41.60 (+0.98)
Google-API-sticky 26.08  29.29 (+3.21) 41.23 42.82 (+1.59)
Sphinx-4 57.61  62.31 (+4.70) 72.08 75.34 (+3.26)
Kaldi 7131  73.38 (+2.07) 77.57 79.05 (+1.48)

Non-incremental quality and disfluency suitability WER results across the reference
variants are shown in Table 1. Google-API clearly outperforms the other systems. How-
ever, its WER does not degrade on disfluency-filtered transcripts as much as Sphinx-4,
which has the largest WER disfluency gain of 4.70, showing it is preserving the disfluent
material the most. Manual inspection shows Google filtering out many speech repairs
and performing badly around them — see (6-a) vs. (6-b). An improved model for filled
pauses would also prevent errors like (7-b).

(6) a. Reference: and the and his front uh his le- the the the back
b. Google-API-fast: and the and the front of theater

(N

Reference: uh another L shape except it’s um symmetrically
Google-API-fast: another L shape septic sam symmetrically

ISR

Also, we notice that performance varies substantially between UK and US speakers,
which is a problem for a corpus that contains mixed speakers. Finally, the post-hoc
re-scoring that is performed by Google-API in the stable and quick conditions only
marginally improves WER over sticking with the strategy used for incremental process-
ing (presumably SER-optimizing Viterbi decoding).

Finally, we note that the Google-API only provides a transcript of words, both Sphinx
and Kaldi generate detailed word timings that can be used for analysis by downstream
modules.

Incremental quality Figure 3 plots timing and stability for three recognizers (and
Google’s three settings). Timing metrics are shown for all hypothesized words (rather
than just for words that match the transcript). As can be seen in Figure 3 (a, b), both
Kaldi and Sphinx often have a first impression (FO, Subfigure a) of the word right after
it is being spoken, while Google is lagging a little. Google and Sphinx are a little quicker
in deciding for a word (FD, Subfigure b) than Kaldi, but Google in particular is hurt by
words being revised long after they have been hypothesized. This is clearly observable in
Figure 3 (c), which shows that a word still has a 5 %-chance of revision even after it has
been hypothesized for 1 second (and Google is already slower in hypothesizing words
in the first place). This ratio is even worse when limiting hypotheses to just the ‘stable’
part, but can be radically improved when ignoring the final, non-incremental changes of
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Fig. 3. (a and b): Histograms showing the distribution of (a) first occurrence of words and (b) final
decision for words for the three recognizers (and Google’s three settings). Box plots show the
median, quartiles (box) and 5/95% quantiles (whiskers). Some extreme (negative) values may be
caused by alignment errors. (c): Stability of hypotheses expressed as word survival rate over time.
A higher curve implies a higher stability.

Google ASR (the ‘sticky’ setting), albeit at the cost of about 2 % points WER relative.
As Figure 3 (c) also shows, Kaldi most likely performs some variation of hypothesis
smoothing [8] for 150 ms.

6.2 Experiment 2: Training models on in-domain data

We found rather poor performance (in terms of WER) for the off-the-shelf open-source
systems in our interaction-driven domain, presumably because this speaking style does
not conform to the material used when training models for open-source systems. In this
experiment, we trained models with in-domain data, under the hypothesis that these
result in better performance.

Systems and data We train acoustic and language models for German using 10.7
hours of transcribed interactions (partly human-human, human-system, and human-
wizard) from the Pentomino domain described above.? Our Kaldi model is based on an

3In our effort, we tried reasonably hard to build well-performing models, but we did not strive
for best performance, using as much material (whether in-domain or not) as we could get; e.g.,
blending our LMs with Wikipedia, or the like.



Table 2. Word Error Rate (WER) results on German Pentomino data for the trained systems under
different transcript conditions with the WER disfluency gain in brackets.

German
System WER (all)  disfluency filtered
Google-API-stable/quick 22.00 21.86 (-0.14)
Google-API-sticky 20.51 20.44 (-0.07)
Sphinx-4 30.28 30.25 (-0.03)
Kaldi 38.95 38.91 (-0.04)

adaptation of the Voxforge recipe, while our Sphinx-4 model uses the standard settings
of SphinxTrain. Both used the same data for training.

We evaluate our trained systems (and the Google systems) on 465 utterances (3,818
words) from randomly chosen speakers from the German data explained above (the
rest was used for training). Given the human-Wizard interaction domain, compared
to the English corpus above, it contains slower, more dictation-like speech with few
disfluencies, so we would expect the accuracy results to be better, all things being equal
in this domain. However, we find how the large gap to big data driven ASRs such as
Google can be closed somewhat with in-domain trained models.

6.3 Results

WER results across the reference variants are shown in Table 2. Google-API’s systems
have comparable performance to the English data above, however the post-hoc rescoring
actually hurts on this data, with a relative performance hit of 7 %. Sphinx-4 and Kaldi
greatly improve through the in-domain training.

The disfluency results in this setting are not as interesting, given the lack of disfluency
in the training files, and we take the analysis on the English data above to be indicative
of the relative performance of the ASRs.

Incremental metrics are largely unchanged, with a tendency for Sphinx and Kaldi to
perform even better which may be related to their better non-incremental performance
(in terms of WER).

7 Conclusions

We claim that for suitability for incremental, interactive dialogue systems, ASR, in
addition to having good utterance-final accuracy, must also exhibit good incremental
properties, and offer a broad interface that either keeps or marks up disfluencies, and
provides timing information for downstream processing.

In our evaluation, we find that Google-API offers the best non-incremental perfor-
mance and almost as good incremental performance as Sphinx and Kaldi. However,
Google tends to filter out disfluencies, does not provide word timing information, and
limits access to 500 calls per API key a day. We also find that Google’s post-hoc rescor-
ing does not improve WER while considerably hurting incremental performance. Finally,



Sphinx and Kaldi seem to be on par performance-wise, and at least when trained on
in-domain data, these perform similarly well to the Google-API.

We have not, in the present paper, factored out the difference between in-domain
acoustic models and language models. LMs may already be enough to boost performance
for open-source recognizers and are much easier to train. Finally, we want to look into
how to incrementally combine recognizers (e. g. Google-API for lowest-possible WERs
with Sphinx or Kaldi for timely and time-stamped responses).
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